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Some two-dimensional magneto-fluid-dynamic flows 
at low magnetic Reynolds number 

By J. H. HORLOCK 
Departmrnt of Mechanical Engineering, University of Liverpool 

(Received 19 April 1962 and in revised form 18 September 1962) 

A study is made of some two-dimensional flows of an inviscid, uniformly 
conducting fluid in the presence of applied magnetic fields, for the case in which 
the magnetic Reynolds number (the ratio of induced fields t o  applied fields) 
is small but the magnetic force coefficient (the ratio of electromagnetic forces 
to inertia forces) is of order unity. 

Perturbations of uniform incompressible and compressible flows through 
aligned and crossed fields are considered. All these perturbations are strongly 
dependent upon the magnitude of the magnetic force coefficient. An experi- 
mental analogy of the flow through an aligned field is described. 

1. Introduction 
Early work in magnetohydrodynamics, notably that of Hartmann (1937), 

was directed towards the study of the changes in incompressible viscous flows 
produced by electromagnetic forces. The prospects for inagnetogasdynamics, 
the fluid mechanics of ionized gases moving through magnetic fields, have 
recently been reviewed by Resler & Sears (1958a) and Shercliff (1959). 

Among the dimensionless groups important in inviscid magneto-fluid- 
dynamic flow are (i) the magnetic Reynolds number R,, which expresses the 
ratio of the induced flux density to the applied flux density, and (ii) the magnetic 
force coefficient S ,  which is the ratio of the electromagnetic force per unit 
volume to the inertia forces per unit volume in the fluid. 

One-dimensional magnetogasdynamic flows, with crossed fields, have been 
studied by Resler & Sears (1058b). Two-dimensional perturbation flows at 
infinite, and at large but finite, magnetic Reynolds number have been discussed 
by Sears & Resler (1959), Resler & McCune (1960) and McCune (1960). Williams 
(1960) has obtained more general solutions for finite magnetic Reynolds number 
and finite magnetic force coefficient. 

Hains, Yohler & Ehlers (1960) and Ludford (1061) have considered magneto- 
fluid-dynamic flows in which the magnetic Reynolds number is very small, and 
the applied magnetic field remains unperturbed by currents produced in the 
fluid. Hains et al. have described a general method of characteristics for use in 
supersonic flow under these conditions; they have also linearized the equations 
by considering small values of the magnetic force coefficient, and obtained 
solutions for both subsonic and supersonic flow. Ludford has studied the case 
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in which, although R, is small, the magnetic force coefficient is very large and 
only pressure and magnetic forces are present. 

The present study is also confined to flows in which the applied field remains 
unchanged by current flows in the fluid (R, < l ) ,  but the force coefficient S 
is of order unity and the equations of motion are linearized by considering two- 
dimensional perturbations of a uniform flow. Viscous effects, Hall currents and 
ion slip are all neglected. 

2. General equations of motion 
Various authors (e.g. Resler & Sears 1958a) have given the basic equations 

for the motion of conducting fluids. For steady inviscid flow, the momentum 
equation is 

1 rU(JxH) -Vp+(q.V)q = ---, 
P P 

where q is the velocity vector, p the fluid density, p the pressure, J the current- 
density vector, p the fluid permeability and H the field strength. The equation 
of continuity is 

Ohm’s law requires that 
v. (pq) = 0. 

J = @+pq x H), 

where E is the electric field and u the fluid conductivity, assumed uniform. 
Maxwell’s equations are 

V X E  = 0 ,  (4) 

and V X H =  J. 
It follows from (5) that 

V .  J = 0. 

Ludford (1961) has rewritten these equations in dimensionless form. By use 
of (3), (1)  and (5) may be written 

1 S 

P P 
- Vp + (q . V) q = - (E + q x H) x H, ( la)  

and V X H  = R,(E+qxH), (5a)  

where the fluid and magnetic properties are made dimensionless by referring 
them to undisturbed uniform values. Here S = ~,a2Hil/poll+, and R, = ,udJOl 
are the magnetic force coefficient and magnetic Reynolds number, based 
on these uniform values of density (p,), field strength (H,), velocity (U,) 
and a representative length 1. The units of p and E are poUi and ,uU,H,, 
respectively. 

The following analysis is concerned with small perturbations of the uniform 
flow. If the current density is also restricted to a small value j, and the magnetic 
Reynolds number is small, it  follows from (5a )  that V x H is of second-order 
smallness, disturbances in the field may be ignored, and the field strength H 
may be taken as the uniform applied field H,. An electric field E = -,u(U, x H,) 
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must be applied to restrict the current density to the small value j. If S is of order 
unity, the magnetic force term must be retained in equation (1 a). 

With these assumptions and the further assumption that the permeability 
of the fluid and its boundaries is that of free space (,uo), equations ( l ) ,  (a), (3) 
become 

( 1  b) 
1 j x Bo -Vp+(U0.V)c = -’ 
P P 

(Vp’) . u, +p0(V. c) = 0’ 

j = g(c x Bo), 

where c is the perturbation velocity vector, p’ is the perturbation density, and 

Maxwell’s equations are not needed, as neither electric nor magnetic fields are 
Bo = POHO. 

disturbed. 

3. Incompressible flow 

equation (1 a,), thus 
For incompressible flow the pressure term is eliminated by taking the curl of 

( 7 )  
V x (j x B,) (Bo.V)j (U,.V)w = = -___- 

Po Po 

where w = V x c is the perturbation vorticity. 
Examples of two-dimensional perturbations of a uniform flow Uo in the x- 

direction are now considered. Such flows may be produced if there is some small 
obstruction placed within the flow or at a wall. The perturbation velocities in 
the (x ,  y)-plane are u, v, and the continuity equation enables a perturbation 
stream function Y to be defined such that 

The perturbation vorticity 6 = av/ax - au/ay and the perturbation current j ,  
are in the z-direction. 

(i) With a uniform ‘aligned’ flux B, = B,, the electric field E, must be zero 
for small current densityj,. Equations (7) and (36) give 

If  there is no vorticity at a section where the velocity v is zero (for example, far 
upstream of a small obstacle placed in the flow) then equation (9) may be inte- 
grated to give gB2_ v 

or in terms of the stream function 

where S, = cBil/po Uo is the magnetic force coefficient based on a representative 
length 1. 

2-2 
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If the applied field is not quite uniform, say Bx+ b(x, y), then the modified 
form of the stream function equation is 

( l a )  

if 

restrict the current density to small values. Equations ( 7 )  and ( 3 b )  give 

= 0, b ,  = 0 where v = 0. 
(ii) With a 'crossed' field B, = R,, an electric field E, 5 - U,B, is required to 

This equation cannot be integrated directly. It may be writt#en in terms of 

,331IP a311' s, m r  

ax3 a x a y 2  I a92 , 

x, = GB; lip, u,. 

the stream function 
-++- +--=o 

where 

Solutions of these equations for the stream function are next considered. 

( a )  Xolutions for the incorrzpressible j loi l? through an  uligned field 

Three solutions of equation (1 I )  have been obtained, together with a numerical 
solution of the equation (12). 

(i) If the flow is restricted between parallel walls at y = 0, 1, a solution of eqna- 

A small body placed in the stream a t  x = 0 might produce such perturbations 
far from the body. Alternatively a sudden transverse deflexion of the stream 
produced by a cascade a t  x = 0 would decay a t  a rate governed by equations (15) 
to ( 1  7). Perturbations decay more rapidly downstream than upstream. * 

This asymmetry may also be illustrated by considering the equation for the 
stream function ( 1  1). If a solution is written in the form 

'y = e-s.rS/zZ@(,, y), 
then it follows from f 11) that 

* If no field is applied the perturbations decay symmetrically about x = 0, as 
exp (+.nrrz/Z). Glazebrooli (1910) has derived potential-flow soliltions for the flow past 
oval obstacles when the flow is restricted by parallel walls. It may he shown that Glaze- 
brook's solution, for a small obstacle, gives perturbations dwaying as exp ( * nrrrrz/Z) 
upstream and downstream. 
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I n  the flow past a small obstacle located a t  x = 0, the solution for @ will be 
symmetrical about the origin, but that for 'F shows that perturbations of the 
uniform flow are greater upstream than downstream. 

(ii) Another solution of equation (1 1) is 

which is true even without linearization. It follows that 

aP 
= 0, - = 0, _ -  au aP 

- 0, ~- 

ax ax ?I 

and so the flow is one of constant pressure. Such a flow may be produced if the 
stream is suddenly deflected a t  x = 0;  the flow returns exponentially to the 
x-direction and the streamlines are ' translates ' in the y-direction. 

(iii) If the flow is semi-infinite (0 < y < a) and the boundary at y-+O is 
cosinusoidal in shape and of wavelength 21 (i.e. y = E cos 7rx/l), then the v com- 
ponent of velocity a t  this wall is 

lr,€7r . 7rx 
sm 7 

'u == _ ~ _  
1 

and the solution for the stream function of the flow is 

where 

7T 
Y = -U,ccos-(x+ytanQ)exp 

I 

tan q5 see Q = S,/27rr, 

4 = sin-1 [ J( 1 + (d 2, - k] 
Perturbations on the uniform flow are sinusoidal but decay exponentially along 
a line at an angle 4 to the y-axis. As Sx -+ 0, we have 4 ++ 0, and as S,+ 00, 

we have Q -+ Q7r. 

Equation (21) may be compared with the solution given by Liepmann & 
Roshko (1957) for flow past a wavy wall in the absence of magnetic fields. In 
the incompressible non-conducting case, perturbations dccay exponentially 
with y normal to the wall, and the flow is irrotational. In the incompressible 
magnetohydrodynamic case, the perturbations are transmitted upstream, aid 
there is vorticity distributed through the flow field. 

The analysis given by Williams (1960) provides a link between the solution 
of equation (21) for small magnetic Reynolds number and the solution of Sears 
8: Resler (1959) for infinite magnetic Reynolds number. 

Williams' solution for the perturbation velocity vector in the flow past a 
wave-shaped wall is 
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where 
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and k is the unit vector in the z-direction. 
For small magnetic Reynolds number and finite A",, m2 is small and 

Hence c = - UoeV x (k e ~ m x ~ - f l , ) ,  (24) 

and 

This may be shown to be the same as the solution obtained above. The perturba- 
tion in the flux strength, 

may be shown to be of second-order smallness for small R,. 
Williams has shown that equation (26) reduces to the result given by Resler & 

Sears for infinite conductivity. 
(iv) The application of the slightly non-uniform flux B,+b(z,y) will cause 

perturbations of a uniform flow; the field produced by a short solenoid, for 
example, will act as a form of magnetic nozzle. 

A relaxation solution of equation (13) has been obtained for the case in which 
the applied field (and flux) is made up of two components: 

(a )  a flux b,, b, due to two current-carrying conductors at x = 0, y = rfr Ql, 
the flux at x = 0, y = 0 being 100 units. 

( b )  an addition flux Bx of 1000 units. 
The maximum flux b, in the duct is then approximately 100 units and the total 
flux varies from 1000 to 1100 units. In  the relaxation solution a constant value 
of S, = 16 (based on the flux B,) was assumed. 

The perturbation stream function obtained from this approximate solution 
is shown in figure 1. The maximum displacement occurs near the walls of the 
duct, and perturbations decay more rapidIy downstream than upstream. 
The displacement of the streamlines is very small because of the strong axial 
field (the maximum value of the perturbation stream function is approximately 
6 when the stream function of the uniform flow varies from zero at one wall of 
the duct to 750 at the other). The maximum streamline displacement is there- 
fore less than 1 yo of the duct width. 
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FIGURE 1. Flow through magnetic nozzle. 

(b) Solutions for  the incompressibleflow through a crossed field 

Two solutions of equation (14) have been obtained. 
(i) With the flow restricted between parallel walls at y = 0, I ,  solutions for Y 

2n7r nnY Y = ~ ( A n e ~ n ~ + B n e - B ~ x + C n e - y n x ) s i n - -  for S, < ~ (27) 
are 

n 1 3 4 3 ’  

where a,, - p,, - yn are the real roots of the equation 

nniY 2nn and Y =  C(Anean~+Hne-~anz(cosqnz+6,))s in--  for S, > ~ (29) 
1 3 4 3 ’  

where an, - $a, iq, are roots of equation (28). 
Values of the first roots for various S, are given in table 1. 

For S, > 2 ~ 1 3 4 3 ,  damped standing waves appear downstream in any non- 
zero solution (provided it is not composed only of high-n normal components). 
Analogous solutions are described by Squire (1956) for the swirling flow past a 
small obstacle, although in this case the standing waves are undamped in in- 
viscid flow. 

(ii) The solution 
Y = - U,s cos (n/l) (x + y tan @) e--pnglz ( 3 0 )  

describes the flow plast a wave-shaped wall. 
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Here 

and 

where 

(32) 

(33) 

Perturbations are transmitted downstream but decay exponentially away from 
the wall. 

The link between this solution and that of Resler & Sears for infinite conducti- 
vity may also be made through Williams's analysis. 

(iii) No constant-pressure solution similar to that of 5 3 ( a )  exists, since here if 
p is constant av/ax = 0 and hence v = f(y). Substitution into the linearized 
equations of motion shows that ffy) must be constant. Thus a constant velocity 
perturbation v may be added to the uniform flow, but this is a trivial solution. 

4. Compressible flow 
For compressible flow Crocco's equation 

Vh,- TVs = U, x w + j x B,/p (34) 

is a more convenient starting point than the Euler momentum equation. Here 
h, is the stagnation enthalpy, T the temperature and s the entropy of the fluid. 
In  addition the energy equation may be written 

Dh" p- = E.j ,  
Dt 

and the equation for entropy production is 

(35) 

The current density is restricted to small values by making E = - U, x B,. 
(i) With a uniform applied flux B, = B, and E, = 0, Dh,/Dt = 0. Further 

Ds (rv2B: v 2  T -  = ~ = u s  --, 
Dt Po O 

which is of second-order smallness. 
If  h, and s are constant across the stream at entry, then they are uniform 

throughout the field. Prom equation (341, we have, for the two-dimensional 
perturbation of a uniform flow, 

as for incompressible flow. 
A perturbation stream function for compressible flow is defined by 

= -p0v. 
ay a u r  
- = p,u+p'U,, - aY ax (37) 
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Since the flow is isentropic, the second Euler equation may be written 

where a; = (aplap), is the square of the speed of sound of the undisturbed flow. 

function a 2 y  

Using equations (loa), (37) and (38), one obtains an equation for the stream 

(39) 
1 a 2 i r  A ~ Y J -  

p+pp--p-+$.- = 0 
az2 (1 -M;)  a y 2  1 ax ’ 

where M ,  is the Mach number of the undisturbed stream. 

again required to limit the current flow to small values and 
(ii) With a uniform applied flux B, = B,, an electric field E, = - UJ3, is 

which is of first-order smallness. 
Also 

which is of second-order smallness. Hence the flow is one of isentropic work 
addition and subtraction. 

Taking the curl of equation (34), one obtains the equation for the change of 

3 - ( T ~ ;  au 

ax POuoaY’ 

vorticity 6, thus 

as in incompressible flow. 

~~ ~ - 

The equation for the stream function is then 

( a )  Solutions for compressible JIow through an aligned Jield 

Equation (39) may be transformed into the corresponding incompressible equa- 
tion (1 l) by a change in scale of the y-axis according to y’ = y( l - M i ) & ,  and the 
solutions of § 3n are then valid in an (x ,  y’)-plane, for subsonic flow. 

In  supersonic flow, equation (39) becomes 

where h 2  = M:-- 1 > 0. A solution for the supersonic flow past a wave-shaped 
wall is 

?T 
Y’ = - [i,e cos - (x + y tail 4‘ )  e-k’ny’z, (42) 1 

h 
22 

where tan$’ = ( S +  I)+,  

and 
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As S, --f 0, we have 6 -+ 1, k' -+ 0 and tan q5' + -A. The solution then ap- 
proaches that for the normal supersonic flow past a wavy wall, in which Mach 
waves are transmitted downstream at an angle tan-l(M: - 1)i to the normal. 
With increasing S, the shape of the wall is transmitted further back in the flow, 
but perturbations decay exponentially away from the wall. 

( 6 )  Solutions for the compressible sow through a crossed Jield 

Compressible flow solutions similar to those of 5 3(b) may be obtained. 
(i) With Y = Z A, sin (n71y/l) eknx, the value of k ,  is again given by a cubic : 

the expected ordinary subsonic solution. With M ,  zero, the cubic equation be- 
comes equation (28). 

The critical value of 23, that is required to form standing waves is now a function 
of the Mach number. For example, with M, = 2-4, we have 

l ~ ~ - - - l l k Z , - 2 F ) ~  S klL-T 28, nn = 0, 
n 1  

and with S, = 27113, 
k, = 37111, ( -+ k i24) 7lp. 

(ii) The solution to the flow past a wave-shaped wall is 

7T 
Y = - U,E cos - (x + y tan $') e--p'*ylZ, 

1 

where p' and tan $' are given by the equations 

I p r 2  - ?%&tan yY + (Mz - sec2 @') = 0,' 

pj2+ '*tan yY + (M? - tan2 $') = 0. 

7T 

n 

(44) 

(45) 

5. The method of characteristics in supersonic flow through an aligned 
field 

Hains et al. (1960) have given complex equations for the characteristic direc- 
tions in supersonic flow at low R,,, and for the compatibility equations along these 
characteristics. Dr M. D. Cowley (1961) has pointed out to the author that simple 
characteristic relations could be derived from the equations for a small perturba- 
tion of the uniform flow through an aligned field. 

Combining the momentum equation in the x-direction with the continuity 
equation, we get 

(46) 
au av 
ax ay ' 
-(M$-l) = - 
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Using the Prandtl-Meyer function dv = U;l cot pdu, where tanp  = (HE - 1)); 
and writing 0 = v/Uo, where 6’ is the inclination of the flow to the x-axis, we 
obtain from equations (46) and ( l o b )  

av ae 
ax aY 
--tanp- = 0, 

X 

FIGURE 2. Characteristics for flow through aligned field. 

If q and are the characteristic directions, inclined a t  the Mach angle to the 
streamline (or to the x-axis in a perturbation flow), these equations may be 
transformed into 

Along the rpharacteristic, 
S O  s e  

A(v-8)  = L A ~ c o s ~  = L A X .  
1 1 

Along the 6 characteristic, A ( v  + 8) = - SZ8Ax/1. With S, known, a characteristic 
net may be calculated for supersonic flows. From two points A and B (figure 2) 
characteristics may be drawn to intersect at C, and (Y, 19) at C calculated by trial 
and error. Three examples of this method of characteristics are given below. 

(i) The supersonic flow past a sinusoidal wall has been calculated by the method 
of characteristics for comparison with the solution given in $4 (a). The velocity 
perturbation u is obtained from the solution for Y as follows: 

(48) 
I 77 77 

1 1 
ri, €77 
211h 

- (a+ I)* sin - (z+ y tan #’) + (6- cos - (x+ y tan $’) e--xng/Z. 
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The local Mach number is 
M = lcfx[l+ au/q)p. (49) 

An example has been worked for S;, = 8, M, = 34, €11 = &. For these con- 
ditions we get from equations (43) k' = 0.933 and $' = 53'50'. Along a line* 
drawn at 53" 50' to the normal from the crest of the w-ave, 8 = 0 and 41, it may 

FIGURE 3. Characteristic solution for supersonic flow past wave- 
shaped wall. 

h 

FIGCTRE 4. Characteristic solut,ion for supersonic flow past wedge. 

be calculated from the above equations. The characteristics were drawn at 
45', as shown in figure 3, and the values of 1' and 8 calculated at the nest 'line 
of crests'. The calculations show that the distribution of v, B along this line is 
closely that assumed along the starting line for the calculations, as expected. 

* Note that this line is not a characteristic. 
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(ii) A second calculation has been made for the supersonic flow past a thin 
wedge. Up to the attached shock wave starting from the nose of the wedge 
there is no deviation of the flow from the x-direction. 

The shock wave near the wedge is inclinded at the angle given by ordinary 
gas dynamics. A calculation of the locus of the shock wave away from the nose 
has been made for an upstream Mach number of 3.2 and a wedge angle of 7" 
and is shown in figure 4. A characteristic line from the wedge surface behind 
the shock is drawn to intersect the shock wave. At the intersection, v + 6' (behind 

FIGURE 5 .  Flow past a corner. 

the shock) is obtained from the characteristic equation. The shock inclination 
to give this value of v + 8 is obtained by trial and error from gas tables. The soh- 
tion is then carried forward for the whole area behind the shock wave. 

The example (calculated by Mr N. R. Jones) shows that the wave bends over 
towards the wedge. A finer characteristic net than that shown in figure 4 can 
be used by starting other characteristics from the shock wave itself. 

(iii) Dr M. D. Cowley (1961) has considered the case of an expansion a t  a 
corner (figure 5 ) .  Across the wavelet starting from the corner, 

ax = 0 and dil = -do. 
Along the wavelet, 

From (50) and (51) one gets 

(52) 

where subscript c refers to conditions at the corner. 
The flow through a slightly under-expanded nozzle has been calculated using 

this analysis and the method of characteristics. The deflexion through the first 
wavelet is given by equation (53), and the bounding streamline is a t  constant v 
(the flow is isentropic for small 0 and the pressure and therefore the Mach number 
are constant along the boundary). Figure 6 shows the calculated position of the 
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bounding streamline for an example in which the entry Mach number is 4 2  
and the maximum deflexion at the nozzle outlet is 4". 

The deflexion through the wavelet decays exponentially along it and there 
will be little or no reflexion in a wide channel. The flow quickly opens out to the 
full flow area corresponding to the prescribed back pressure. 

It should be noted that the turning given by equation ( 5 2 )  cannot be matched 
to the constant-pressure solution of $4 (a )  because the exponential index in the 
equation differs by a factor of 2 .  The region behind the wavelet is not one of 
constant pressure because the deflexion is not uniform along the wavelet (the 
pressure change through the wavelet is poUi(M: - 1)-$ A0 as in ordinary gas 
dynamics). 

i-, = f 13.3 z'= 13.3 

8 = - 0 8  
z l= 13.3 

FIGURE 6. Characteristic solution for exhaust from under-expanded nozzle. 

6. An analogy for the incompressible flow through an aligned field 
Prof. J. H. Preston (1961) has shown how the Hele Shaw analogy (Lamb 1932, 

p. 582), in which a highly viscous flow between parallel plates is used to illustrate 
potential flows, may be adapted to solve equations other than the usual 
Laplace equation. He noted that the general form of the Hele Shaw stream 
function is 

where u = a'€''/ay, v = -aY"/ax, and the distance between the plates t is 
allowed to vary with x and y. 

With an exponential variation t = to exp ( - S,x/31), the stream function 
form of equation (1 1) is obtained: 

Some experimental results illustrating the solutions of 8 3 (a)  are given in 
figure 7 (plates 1 and 2 ) .  A variation t = toexp ( - &nz/Z) was used in the experi- 
ments, where I was the width of the main stream (2.5 in.) and t was varied from 
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0.125in. to 0.005in. This corresponded to an S, value of i n  = 4.71. The fluid 
used was glycerine, and the body shapes were made of wax. Dye was introduced 
into the flow to mark the streamlines. 

Figure 7 a  (plate 1 )  shows the flow past a cylinder placed in the flow. The 
disturbances in the streamlines are more pronounced upstream than down- 
stream, as predicted in $ 3  (a). The same effect occurs in the flow past a plate 
normal to the stream (figure 7b). 

Figure 7 c  (plate 2) shows the flow past one of two ‘crests’ of a wavy wall, 
y = ecosnx/l. The wall shape is transmitted upstream, but decays exponen- 
tially from the wall. The angle q5 should be 194’ as calculated from equation (22) 
and the experiment confirms that the angle is of the order of 20”. 

Figure 7d (plate 3)  shows the flow through a channel in which the wall shape 
is y = yoexp ( -flzx/Z). Away from the section where the main deflexion takes 
place the streamlines are ‘translates ’ in the y-direction. 

7. Discussion 
A variety of flows at low magnetic Reynolds number through aligned and 

crossed fields have been considered. 
With an aligned field, perturbations are transmitted further upstream than 

in ordinary incompressible flow. An explanation of this effect may be given by 
considering the vorticity generated by a flow crossing the field lines. For example, 
in the flow past a wavy wall, if the streamlines are initially regarded as unin- 
fluenced by magnetic effects (figure 8 a) ,  thenvorticity is generated as shown in the 
figure. Around the circuit ABCD the circulation is counter-clockwise (positive), 
for the v component of velocity within the region is negative. The streamline 
near to the wall moves forward in incompressible magnetohydrodynamic flow 
(figure 8 b) ,  the gap g decreases in width, the velocity along DC increases and the 
required counter-clockwise circulation round ABCD is obtained. But in super- 
sonic flow (figure 8 c )  a rearward movement of the streamlines widens the gap g 
and the velocity along DC again increases to give the required circulation. 

With a crossed field, perturbations are transmitted further downstream 
in incompressible flow. Arguments similar to those above may be used to explain 
this effect. With a magnetic force coefficient greater than a certain critical 
value, standing waves may develop in disturbed flow past a small obstacle in 
the stream. 

A simple method of characteristics enables supersonic flows through aligned 
fields H, to be calculated. The shock wave from the leading edge of a wedge is 
bent back towards the main stream direction by the magnetic effects. Transverse 
flows across the H, field lines, such as the expansion from an underexpanded 
nozzle, are quickly damped and the flows return to the z-direction. 

All these flows at low magnetic Reynolds number are strongly dependent 
upon the magnitude of the magnetic force coefficient 8. 

The author wishes to thank Dr J. A. Shercliff, Dr M. D. Cowley, Dr Sheila Bren- 
ner and Mr R. A. Phillipps for useful discussion, and Mr E. T. Hobson and Mr J. 
Cowie for help in the experimental work (in which a modification of the original 
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Hele Sliaw apparatus was used.) The analysis of incompressible flow given in 
this paper first appeared in A.R.C. Report no. 31,106 (1959). 

A B 

(c)  

FIGURE 8. Effect of vorticity generation. (a )  Streamlines uninfluenced by 
magnetic effects. ( b )  Subsonic flow. (c) Supersonic flow. 
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4- Flow 

(Poring p .  33) 
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B’IU~IILIC 7. H(do Shaw analogy for flow through aligncti f i c l l r l .  ( n )  Flo\v Ixist, c.yiint1r.r. 
(0) Plo\v past; normal flat platc. ( n )  Flow past wave-shaped wall. ( d )  Flow t>hroagh 
exponential channol. 
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